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Abstract 
The split fovea model, which reflects some aspects of the 
anatomy of the visual pathways, has successfully addressed 
several phenomena in visual word recognition (e.g., 
Shillcock, Ellison & Monaghan, 2000). However, it is still 
unclear what qualitative processing differences exist between 
a split architecture and a non-split counterpart. In the current 
study, we compare the performance of split and non-split 
architectures in modelling Chinese character pronunciation 
and show that Chinese left-right structured phonetic 
compounds create a unique opportunity for understanding the 
qualitative processing differences between the two possible 
versions of cognitive architectures.  

Keywords: Connectionist modelling; Chinese character 
pronunciation; foveal splitting. 

Introduction 
In Chinese orthography, characters are the smallest units of 
the orthography. There exists a dominant type of Chinese 
characters, phonetic compounds, in which a semantic radical 
signifies the meaning of the character and a phonetic radical 
potentially informs the pronunciation of the character. 
Phonetic compounds comprise about 81% of the 7,000 
frequent characters in the Chinese dictionary (Li & Kang, 
1993).  

The phonetic compounds have different relationships with 
their phonetic radical. For current purposes, regular 
characters are referred to as the characters that have the 
same pronunciation and tone as their phonetic radical; 
semiregular characters have the same pronunciation as their 
phonetic radical, but with a different tone; irregular 
characters have different pronunciations from their phonetic 
radical. In the Chinese lexicon, about half of the phonetic 
compounds are irregular, the other half are either regular or 
semiregular (Hsiao & Shillcock, submitted(a); unless 
otherwise stated, all Chinese language statistics cited here 
are from this paper). A regularity effect has been reported in 
Chinese phonetic compound recognition: regular characters 
are named faster than irregular characters. There is also an 
interaction between character frequency and regularity in 
Chinese, as in English (see, e.g., Hue, 1992; Liu, Wu & 
Chou, 1996; Seidenberg, 1985). The regularity effect and its 
interaction with frequency have been commonly used to 
examine cognitive plausibility of computational models 
(see, e.g., Plaut, McClelland, Seidenberg, & Patterson, 
1996). 

About two-thirds of phonetic compounds have a left-right 
structure. This left-right structure is the most tractable 

aspect in Chinese orthography, and has been a focus for 
understanding Chinese character recognition processes. The 
majority of the left-right structured phonetic compounds 
have the semantic radical on the left and the phonetic radical 
on the right – SP characters. The opposite arrangement also 
exists, in which the phonetic radical appears on the left and 
the semantic radical on the right – PS characters (Figure 1). 
The ratio of SP and PS character types in Chinese lexicon is 
about nine to one. They have correspondingly different 
internal information profiles. From an entropy analysis, 
there is greater entropy on the right side of the SP 
characters, reflecting greater variability of the phonetic 
radicals on the right as opposed to the semantic radicals on 
the left. In contrast, there is greater entropy on the left side 
of the PS characters, where the phonetic radicals appear. 
The distinction between the SP and PS characters provides 
important opportunities to examine hemispheric processing 
in language, given the very different information contained 
in the two halves of the character, interacting with the split 
fovea, which we discuss below.  
 

 
Figure 1. An SP and a PS character 

 
The fovea is the part of the retina across which a fixated 

word is projected. It is responsible for fine-grain, focal 
visual processing. From anatomical and behavioural studies, 
it has become increasingly clear that the human fovea is 
precisely vertically split (see, e.g., Frendrich & Gazzaniga, 
1989; Gray, Galetta, Siegal, & Schatz, 1997). This fact has 
fundamentally important implications for visual word 
recognition (Shillcock et al., 2000): when a word is fixated, 
the left part of the word is initially projected to the right 
hemisphere (RH) and the right part to the left hemisphere 
(LH). Thus, visual word recognition can be reconceptualised 
in terms of coordinating the information in the two 
hemispheres. The splitting is sufficiently precise that a 
single Chinese character, under normal reading conditions, 
is split precisely at the fixation point, with the semantic and 
phonetic radicals projected contralaterally to the two 
hemispheres (Hsiao, Shillcock, & Lavidor, submitted). 

The split fovea model of English word reading has 
successfully captured several reading phenomena (see. e.g., 

SP character  PS Character 
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Monaghan & Shillcock, submitted; Shillcock et al., 2000; 
Shillcock & Monaghan, 2001a). The split architecture 
fortuitously corresponds to the functional division of the 
phonetic compound structure; it “carves the problem at its 
joints”. Alphabetic languages like English contain uneven 
distributions of information within words, but do not contain 
the dramatic difference observed in Chinese orthography. In 
modelling word recognition phenomena in English, the split 
architecture significantly accentuates phenomena such as 
the exterior letters effect (Shillcock & Monaghan, 2001b), 
but it does not trade on the qualitative differences in 
representations found in Chinese orthography. In view of 
this opportunity – not available in alphabetic languages – for 
examining the plausibility of the split fovea claim, Hsiao 
and Shillcock (2004) applied the split fovea architecture in 
modelling Chinese phonetic compound pronunciation. Their 
model successfully addressed some of the known effects in 
Chinese character recognition, such as the regularity effect 
and the regularity by frequency interaction, and provided 
cross-language support for the hemispheric 
desynchronization account of surface dyslexia (see 
Monaghan & Shillcock, submitted).  

 

 
Figure 2. The non-split model for mapping Chinese 

orthography to phonology. 
 
Previous efforts in connectionist modelling of Chinese 

character recognition usually adopted a feed-forward 
network architecture with a single hidden layer (Chen & 
Peng, 1994. See Figure 2). This architecture can be 
considered as a non-split architecture as opposed to the split 
fovea architecture, which has two interconnected hidden 
layers, left hidden layer (LHL) and right hidden layer 
(RHL), receiving input from left and right halves of the 
input layer respectively (Figure 3). These interconnections, 
or “callosal” connections, between the two hidden layers 
enable the “interhemispheric” communication between the 
two halves of the input. Nevertheless, non-split models also 
have been reported to be able to capture the regularity effect 
and the regularity by frequency interaction (Chen & Peng, 
1994). It is hence unclear whether the split fovea model has 
a qualitatively different processing style and behaviour from 

the non-split model. Here we explore this issue by training 
both the split and non-split models with a realistic large-
scale lexicon, which has an imbalanced distribution of SP 
and PS characters, and an artificial lexicon that has a 
balanced distribution of SP and PS characters. We show that 
the difference between the two architectures is revealed in 
processing the lexicon with an imbalanced SP and PS 
character distribution. This difference hence has important 
implications for the hemispheric processing of language. 

 

 
Figure 3. The corresponding split-fovea model. 

 

Simulations 

Phonological Representation 
In the current modelling, we adopted a distributed, feature-
based phonological representation. The pronunciation of 
each Chinese character has only one syllable, which can be 
divided into three segments: the initial consonant, the 
nucleus vowel, and the final consonant. Each character also 
has a tone associated. We allocated 14 features for the initial 
consonant, 8 features for the nucleus vowel, 3 features for 
the final consonant, and 2 features for the tone. In total, the 
phonological representation consisted of 27 feature nodes 
(for details, see Hsiao & Shillcock, 2004). 

Orthographic Representations 
Chinese orthography consists of several individual strokes. 
Some strokes may comprise a “stroke pattern”, which is a 
recursive constituent of Chinese characters. In the 
orthographic representation, we used basic stroke patterns 
defined in Cangjie, a Chinese transcription system (Chu, 
1978), to reflect the observation that the recognition by 
skilled readers is based upon well-defined, integral 
orthographic units (Chen, Allport, & Marshall, 1996; Zhou 
& Marslen-Wilson, 1999). There are 179 such basic stroke 
patterns comprising the radicals of all left-right structured 
Chinese phonetic compounds. These 179 stroke patterns 
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were used to encode each Chinese character in the current 
models (see Hsiao & Shillcock, 2004). 

Training and Test Corpora 
Two sets of training and test corpora were used. In the first 
set, the training corpus contained all left-right structured 
Chinese phonetic compounds and their phonetic radicals 
which exist as characters on their own. During training, each 
character was presented according to its log token 
frequency. The database contains 2,159 of the most frequent 
left-right structured phonetic compound characters and 880 
radicals that are also existing characters. The test corpus 
contained the same phonetic compounds as those in the 
training corpus, but not the phonetic radicals.  

In the second set of corpora, an artificial lexicon was 
created in which the SP and PS characters had a balanced 
distribution. This artificial lexicon had 200 SP and 200 PS 
characters. The character type distribution in both the SP 
and PS character groups was proportional to the distribution 
of the SP characters in the real lexicon. Hence, among the 
200 characters in either the SP or PS group, there were 74 
regular characters (37%), 26 semiregular characters (13%), 
and 100 irregular characters (50%). Within the 100 irregular 
characters, 53 characters had the same rime as their phonetic 
radical, 12 characters had the same onset as their phonetic 
radical, and 35 characters had a radically different 
pronunciation from their phonetic radical.  

The radicals that comprised the 200 SP characters 
consisted of 10 semantic radicals that only appeared on the 
left of the characters, and 40 phonetic radicals. The 200 PS 
characters consisted of the same 40 phonetic radicals as 
those in the SP characters, and another set of 10 semantic 
radicals which only appeared on the right of the characters. 
The 40 phonetic radicals could appear on either the left or 
right of a character. The characters in the SP group were 
randomly generated from different combinations of the left 
semantic radicals and the phonetic radicals; the semantic 
radicals of the characters in the PS group had the same 
combinations with the phonetic radicals as those in the SP 
group. The training corpus contained all the 400 phonetic 
compounds and the 40 phonetic radicals. Each character was 
presented with equal frequency. The test corpus contained 
the same phonetic compounds but not the phonetic radicals. 

 

 
 

Figure 4: Three fixation positions in the input layer. 
 

Network Architecture 
In our split fovea model for Chinese character 
pronunciation, real fixation behaviour was idealized and a 
character was presented in each of three fixation positions 
equally frequently (Hsiao & Shillcock, 2004. see Figure 4). 
We adopted the same idealization in the current modelling. 

Figures 2 and 3 show the non-split and split network 
architectures respectively for modelling the real lexicon. 
Adjacent layers were fully connected. The four blocks in the 
input layer were used to accommodate the input schema 
shown in Figure 4. Each node in a block represented one of 
the 179 possible stroke patterns. This orthographic input 
was mapped onto a feature-based phonological output, 
where the most frequent pronunciation of the input character 
was presented. We equalized the computational power of 
the two networks as much as possible by adding recurrent 
links to the hidden layer of the non-split model and making 
the number of weighted connections in the two models as 
closed as possible. Hence, the principal difference between 
the two models was the network architecture 1 . The 
corresponding split and non-split models for modelling the 
artificial lexicon is shown in Figure 5. The learning 
algorithm was discrete back propagation through time 
(Rumelhart, Hinton & Williams, 1986). 

 

 
 

 
 
Figure 5. Corresponding split and non-split architectures 

for modelling the artificial lexicon. 
 

                                                           
1  Note that because of the inherent difference in architecture 
between the two models, it is not possible to equalize the 
computational power of the two models in terms of both the 
number of nodes and the number of weighted connections while 
keeping connections between layers all fully connected. We chose 
to match the number of weighted connections since the weights on 
the connections are the only trainable parameters during training 
according to the learning algorithm, and hence the number of 
weighted connections is a good indication in the models’ learning 
capacity. 
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Results and Discussion 
We ran each model ten times and analyzed their average 
performance. The performance of the two models was very 
similar but in each of the two cases, the artificial lexicon 
and the real one, the split model had a slight but significant 
advantage over the non-split model (paired t-test, t(1, 399) = 
-3.778, p < 0.001 and paired t-test, t(1, 2158) = -6.363, p < 
0.001, respectively). This slight advantage suggests that the 
split architecture encouraged the model to discover the 
functional division between the radicals in the two halves of 
the characters. The divided visual system fortuitously 
mirrored the distinction between the phonetic and semantic 
information in the orthography2 (Hsiao & Shillcock, 2004).  

As for their performance on different types of characters, 
both models captured the regularity effect and the regularity 
by frequency interaction in the real lexicon. For the top 10% 
high frequency and bottom 10% low frequency characters, 
the regularity by frequency interaction was significant (F(1, 
428) = 8.052, p < 0.01); the interaction between the two 
models was not significant (F(1, 428) = 1.456, n. s.). 

The two models also had similar performance on SP and 
PS characters. In the split model, there was a significant 
interaction between position of the phonetic radical and 
character regularity (F(1, 2155) = 4.161, p < 0.05); this 
interaction was marginal in the non-split model (F(1, 2155) 
= 2.938, p = 0.087). The difference between the two models 
in this interaction was not significant (F(1, 2155) = 0.646, n. 
s.). This interaction reflected the fact that only 34% of 
characters are regular or semiregular among the PS 
characters, compared with 50% among the SP characters. 

When examining the performance difference between the 
two models, we observed a significant three-way interaction 
between network architecture, fixation position (see Figure 
4), and position of the phonetic radical (F(2, 4310) = 6.594, 
p = 0.001). When we examined the models’ performance in 
different fixation positions separately, we found that when 
characters were centrally presented in fixation position two, 
there was a significant interaction between network 
architecture and position of the phonetic radical: compared 
with the SP characters, the PS characters were relatively 
more difficult to process in the non-split model, but 
relatively easier in the split model (F(1, 2155) = 6.161, p = 
0.013. See Figure 6). In contrast, when characters were 
presented in fixation position one or three, this interaction 
was not significant. In other words, the split model’s 
behaviour in the fixation position one or three was very 
similar to the non-split model. 

 

                                                           
2 Another possibility concerning the observed advantage for the 
split model was the slightly larger number of weighted connections 
in the split model than in the non-split model. Nevertheless, the 
number of connections was already matched as closely as possible 
between the two models, and hence the performance difference 
observed was less likely to be due to the small difference in the 
total number of connections. 
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Figure 6. Interaction between position of phonetic 

radicals and network architecture. Error bars show 95% 
confident interval for mean. 

 
This interaction can be explained in terms of the 

information profile in SP and PS characters and the 
qualitatively different processing style of the two models. 
As mentioned earlier, there is greater variability on the right 
of the SP characters, and this distribution is reversed in the 
PS characters. The overwhelming majority of SP characters 
leads to a greater variability on the right of the left-right 
phonetic compounds. When characters were centrally 
presented in the split model, the left and right radicals were 
projected to the LHL/RH and RHL/LH respectively, and 
communicated through the interconnected callosal 
connections (for the importance of these callosal 
connections, see Hsiao & Shillcock, 2004). Compared with 
the LHL, the RHL had a heavier processing load due to the 
greater variability, or entropy in information theory, on the 
right of the characters (Figure 7). For a centrally presented 
SP character, the RHL was where its phonetic radical 
initially projected. It hence had more processing difficulty 
than a centrally presented PS character, whose phonetic 
radical was initially projected to the LHL. Thus, in the split 
architecture, centrally presented SP characters were 
relatively more difficult to process than PS characters; this 
was especially true for irregular SP characters, for which 
more computational resource was required. 

In contrast, in the non-split architecture, both left and 
right radicals were projected to and processed in the same 
single hidden layer. Also, as shown in Figure 7, the 
staggered input scheme (Figure 4) made the input entropy of 
the two sides of a centrally presented stimulus balanced 
(block 2 and 3 in Figure 7). Hence, for centrally presented 
characters, the minority PS characters became more difficult 
to process than the majority SP characters and this was 
especially true for regular PS characters, due to their 
unrepresentative nature: phonological information came 
from the left of the characters, as opposed to the normal 
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cases in which phonological information came from the 
right of the characters. These two qualitatively different 
processing styles gave rise to the significant interaction 
observed between network architecture and position of the 
phonetic radical. 
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Figure 7. Entropy Analysis of the four blocks in the input 

layer.  
 
Nevertheless, such interaction was only observed when 

the distribution of SP and PS characters in the lexicon was 
imbalanced. Figure 8 compares the performance of the two 
architectures on the artificial lexicon with a balanced 
distribution of SP and PS characters. In the split model, the 
LHL and RHL received the same processing load without 
any bias toward either PS or SP characters. Neither did any 
bias exist in the non-split model given an exactly balanced 
distribution of SP and PS characters. Hence, the interaction 
between network architecture and position of the phonetic 
radical was absent (F(1, 396) = 0.466, n. s.).  

What can be inferred from these findings is that, the 
qualitatively different processing styles between the split 
and non-split architectures is best observed when there is an 
imbalanced distribution of two groups of stimuli with 
opposite internal information distributions. The distinction 
between Chinese SP and PS characters represents a unique 
opportunity for this examination. The processing difference 
between the two architectures hence has important 
implications for understanding hemispheric processing in 
language and examining the cognitive plausibility of the two 
architectures. 
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Figure 8. Performance of the two architectures on the 
artificial lexicon. Error bars show 95% confident interval for 

mean. 
 

Conclusion 
We have compared the performance of two computational 
architectures, the split fovea model and its non-split 
counterpart, in modelling Chinese character pronunciation. 
Both models have successfully addressed the regularity 
effect and the regularity by frequency interaction found in 
behavioural studies. When the computational power of the 
two models is closely matched as much as possible, the split 
fovea model slightly outperforms the non-split model. The 
split architecture fortuitously mirrors the functional 
distinction between the semantic and phonetic radicals, and 
hence facilitates discerning where the phonological 
information comes from. 

The difference in processing style between the two 
models emerged when comparing their performance on 
centrally presented SP and PS characters. Due to the 
imbalanced distribution of SP and PS characters in the real 
lexicon, in the split architecture, the LHL/RH typically 
receives less processing load than the RHL/LH, and 
consequently facilitates the processing of centrally 
presented PS characters. In contrast, in the non-split 
architecture, both SP and PS characters are projected to and 
processed in the same single hidden layer; the 
unrepresentative nature of PS characters consequently 
induces more processing difficulties. Hence, there is a 
significant interaction between the network architecture and 
the phonetic radical position. Nevertheless, such interaction 
is not present when training the networks on an artificial 
lexicon with a balanced distribution of SP and PS 
characters. The distinct structures and skewed distribution 
of Chinese SP and PS characters hence has provided a 
unique opportunity for examining the difference between 
the split and non-split architectures. 
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Do the visual pathway anatomies, reflected in the split 
fovea architecture, really matter in attempts to model 
reading behaviour? The different processing styles of the 
two architectures have made different predictions about 
Chinese readers’ behaviour when naming centrally 
presented SP and PS characters. The future work hence is to 
examine the cognitive plausibility of the two computational 
architectures by verifying these testable predictions through 
behavioural studies (Elsewhere we compare the modelling 
results with behavioural data; see Hsiao & Shillcock, 
submitted(b)).  
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