
 1

 

 

 

 

Convergence of the visual field split: Hemispheric modeling of face and object 

recognition 

 

(Draft version of paper accepted for publication in Journal of Cognitive Neuroscience) 

 

Janet Hui-wen Hsiao1, Danke Shieh2, & Garrison Cottrell1  

1Department of Computer Science & Engineering 

2Department of Cognitive Science,  

University of California, San Diego, USA 

 

 

 

 

Address for correspondence: 

Janet Hui-wen Hsiao 

Department of Computer Science & Engineering  

University of California, San Diego  

9500 Gillman Drive # 0404, La Jolla, CA 92093-0404, USA  

Phone: 1-858-5348603 

Email: jhsiao@cs.ucsd.edu 



 2

ABSTRACT 

Anatomical evidence shows that our visual field is initially split along the vertical 

midline and contralaterally projected to different hemispheres. It remains unclear at 

which processing stage the split information converges. In the current study, we 

applied the Double Filtering by Frequency (DFF) theory (Ivry & Robertson, 1998) to 

modeling the visual field split; the theory assumes a right hemisphere/low frequency 

bias. We compared three cognitive architectures with different timings of convergence 

and examined their cognitive plausibility to account for the left side bias effect in face 

perception observed in human data. We show that the early convergence model failed 

to show the left side bias effect. The modeling hence suggests that the convergence 

may take place at an intermediate or late stage, at least after information has been 

extracted/encoded separately in the two hemispheres, a fact that is often overlooked in 

computational modeling of cognitive processes. Comparative anatomical data suggest 

that this separate encoding process that results in differential frequency biases in the 

two hemispheres may be engaged from V1 up to the level of area V3a and V4v, and 

converge at least after the lateral occipital region. The left side bias effect in our 

model was also observed in Greeble recognition; the modeling hence also provides 

testable predictions about whether the left side bias effect may also be observed in 

(expertise-level) object recognition. 



 3

Convergence of the visual field split: Hemispheric modeling of face and object 

recognition 

 

INTRODUCTION 

Because of the partial decussation of optic nerves, our visual system is initially 

vertically split and the two visual hemifields are initially contralaterally projected to 

different hemispheres. The representations of the two visual hemifields have to 

converge at a certain stage. Nevertheless, it remains unclear where and when this 

convergence takes place. Neurophysiological studies of macaque monkeys suggest 

that the projection to the primary visual cortex of primates is completely crossed, with 

little or no measurable activity from the ipsilateral visual hemifield (e.g., Tootell et al., 

1988). However, it also has been shown that the primate visual system is organized as 

a set of hierarchically connected regions and the receptive field sizes of the neurons 

increase by a factor of about 2.5 at each succeeding stage (Rolls, 2000). In other 

words, in lower visual areas, input from the ipsilateral visual hemifield may occur 

near the retinotopic representation of the vertical meridian, whereas in the higher 

visual areas, the neurons may have a large receptive field that receives bilateral input 

and retinotopy is no longer demonstrated.  

The findings from functional magnetic resonance imaging (fMRI) 

examinations of human visual cortex are in general consistent with the 

neurophysiological studies of monkeys. There has been converging evidence showing 

that neurons in lower visual areas, such as V1 to V4, have retinotopic receptive fields, 

whereas higher visual areas such as MT and the lateral occipital region have large and 

bilateral receptive fields that are poorly retinotopic (e.g., Sereno, McDonald, & 

Allman, 1994; Sereno et al., 1995; Tootell et al., 1997). Tootell et al. (1998) explicitly 
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conducted an fMRI examination of the representation of the ipsilateral visual field in 

human visual cortex. They showed that in most of the visual cortex, the amplitude of 

the activity due to input from the ipsilateral visual hemifield (i.e., activation from the 

other hemisphere after the initial contralateral projection) was not as high as the 

activity from the initial contralateral projection. In addition, in areas that show 

significant contralateral retinotopy, such as area V1, V2, and V3, there was consistent 

and significant decrease in activity (i.e., inhibition) during ipsilateral stimulus 

presentation. This weak ipsilateral activity extends continuously but nonuniformly 

into different areas, consistent with previous neurophysiological studies with monkeys 

(e.g., Cusick, Gould III, & Kaas, 1984; Van Essen, Newsome, & Bixby, 1982). In 

particular, Tootell et al. (1998) reported that the areas anterior to V3a and V4v, which 

are the most anterior retinotopic areas, show significantly greater ipsilateral activity 

compared with adjacent lower visual areas. 

In summary, the anatomical data suggest that the influence from the ipsilateral 

activity may be a continuous but nonuniform process throughout the visual cortex, but 

there does not seem to be a precise location of the convergence of the initially split 

visual input. If there is indeed a convergence location, it may be the areas anterior to 

V3a and V4v due to the abrupt increase of ipsilateral activity. However, it remains 

unclear what kind of processes are engaged before the convergence. In addition, the 

initial trajectory of visual activation flow is a fast and widespread sweep and 

continues through iterations of feedback loops for further processing in the sensory 

area (Foxe & Simpson, 2002); hence, it is unclear yet to what extent the visual split 

influences human cognition. In other words, does this initial split have any functional 

significance?  



 5

Evidence from visual word recognition supports a functional split. The general 

finding is that the two hemispheres have contralateral influence on responses driven 

by the left and right halves of the stimuli, which are initially projected to different 

visual hemifields (e.g., Lavidor, Ellis, Shillcock, & Bland, 2001; Lavidor & Walsh, 

2003; 2004; Hsiao & Shillcock, 2005a; Hsiao, Shillcock, & Lavidor, 2006). There is 

also evidence from face recognition supporting a functional split. For example, a left 

side bias effect has been frequently reported in face perception. The classical 

experiment is to ask participants to judge the similarity between a face and chimeric 

faces made from the two left halves (left chimeric face) or the two right halves (right 

chimeric face) of the original face (from the viewer’s perspective; Figure 1). The 

results show that the left chimeric face is usually judged more similar to the original 

face than the right chimeric face, especially for highly familiar faces (Bruce & Young, 

1998; Brady, Campbell, & Flaherty, 2005). Consistent with this result, other studies 

have argued for a right hemisphere (RH) bias in face perception (e.g., Rossion, Joyce, 

Cottrell, & Tarr, 2003). Nevertheless, it remains unclear how far the split effect 

extends. In visual word recognition, Hsiao and Shillcock (2005a) showed that this 

split effect can reach far enough to interact with sex differences in brain laterality for 

phonological processing, suggesting that the split reaches far enough to influence 

high-level cognition. The question is at which processing stage does the information 

start to converge in order to show the effects of the functional split? 

In order to address the splitting effects observed in visual word recognition, 

Shillcock and Monaghan (2001) proposed a split fovea model (Figure 2) and showed 

that some psychological phenomena in visual word recognition can be better 

accounted for by the split architecture, such as exterior letter effects in English word 

recognition and eye fixation behavior in reading English (Shillcock, Monaghan, & 
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Ellison, 2000). Hsiao and Shillcock (2005b) further showed that the split and nonsplit 

architectures (i.e., the split fovea model and the intermediate convergence model 

shown in Figure 2) in modeling Chinese character recognition exhibited qualitatively 

different processing, and the results were able to account for the sex differences in 

naming Chinese characters in human data. 

Our final motivation comes from studies of neuro-computational models of 

face identification. Dailey and Cottrell (1999) found, consistent with human studies 

(Costen, Parker, & Craw, 1996; Schyns & Oliva, 1999), that a neural network with a 

bias towards low spatial frequencies (LSF) generalized to new images of the same 

person much better than a network biased towards high spatial frequencies (HSF). 

This result suggests that if there is a spatial frequency bias in the two hemispheres, the 

one biased towards LSF should identify faces better, and dominate the other. 

In the current study, we apply the split fovea model to face and object 

recognition. In contrast to previous models in visual word recognition, which act on a 

relatively abstract level of representation (i.e., localist representation of letters or 

stroke patterns), we incorporate several known aspects of visual anatomy and its 

computation into the modeling, in order to examine the timing of convergence in 

terms of processing stages along the hierarchical visual system. We use Gabor 

responses over the input image to simulate neural responses of complex cells in the 

early visual system (Lades et al., 1993). We then reduce the dimension of this 

perceptual representation with Principal Component Analysis (PCA), which has been 

argued to be a biologically plausible linear compression technique (Sanger, 1989; cf. 

Dailey et al., 2002); this is the visual input shown in Figure 2. With this level of 

abstraction, convergence of the initial split may happen at three different stages: early: 

after Gabor filters in the early visual system (i.e., at the input layer), Intermediate: 
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after information extraction through PCA (i.e., at the hidden layer), and late: at the 

output layer (Figure 2). In the early convergence model, the left and right Gabor 

filters are processed as a whole through PCA (i.e., nonsplit input representation; 

Figure 3). In the intermediate convergence model, PCA is applied separately to the 

left and right Gabor filters and the convergence is at the hidden layer. In the late 

convergence model, in addition to the split input layer, the hidden layer is also split, 

and the information converges at the output layer. According to this categorization, 

the split fovea and nonsplit models proposed first in Shillcock and Monaghan (2001) 

can be considered as late and intermediate convergence models respectively1. Here we 

conduct a more general comparison between these three architectures and examine 

their performance and cognitive plausibility. 

In order to account for various psychological phenomena involving 

hemispheric differences, Ivry and Robertson (1998) proposed a Double Filtering by 

Frequency (DFF) theory. The theory argues that information coming into the brain 

goes through two frequency filtering stages. The first stage involves attentional 

selection of task-relevant frequency information, and at the second stage the two 

hemispheres have asymmetric filtering processing: the left hemisphere (LH) amplifies 

high frequency information (i.e., a high-pass filter), whereas the RH amplifies low 

frequency information (i.e., a low-pass filter). The split architectures introduced here 

enable us to apply the DFF theory to modeling face and object recognition. 

There has been an ongoing debate regarding whether the brain processes faces 

differently from objects. Evidence for this argument comes from studies showing that 

the fusiform face area (FFA) in the brain selectively responds to face stimuli (e.g., 

McKone & Kanwisher, 2005), whereas other studies have suggested that several 

phenomena that were thought to be unique to face recognition may be due to expertise 
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(e.g., Gauthier et al., 1999). Thus, the left side bias effect observed in face perception 

may be due to a designated face processor located in the RH, or the reliance on LSF 

processing in the RH (according to the DFF theory) once the expertise is acquired. In 

the following sections, we will first examine whether the DFF theory is able to 

account for the left side bias effect in face perception. A positive result will suggest 

the RH reliance in face processing is due to the low frequency bias in the RH. We will 

then examine the cognitive plausibility of the models with different timings of 

convergence in accounting for the left side bias effect in face perception. We will also 

examine whether the left side bias effect can be obtained in expert object recognition 

in the models with different timings of convergence. The objects under examination 

are Greebles, a novel class of objects that have been frequently used in studies of 

object recognition and perceptual expertise (e.g., Gauthier et al., 1999). The results 

will provide testable predictions regarding whether faces and objects are processed 

differently in the brain. 

 

METHODS 

To simulate responses of complex cells in the early visual system, the input image 

(135 x 100 pixels) was first filtered with a rigid grid (16 x 12) of overlapping 2D 

Gabor filters (Daugman, 1985) in quadrature pairs at six scales and eight orientations 

(Figure 3). The six scales corresponded to 2 to 64 (i.e., 21 to 26) cycles per face. Given 

the width of the image (100 pixels), this frequency range hence can be considered as 

the task-relevant frequency range (the seventh scale would have 128 cycles per face, 

and hence one cycle would cover smaller than one pixel). Hence the first stage of the 

DFF is implemented by simply giving this input to all of our models. The paired 

Gabor responses were combined to obtain Gabor magnitudes. In the nonsplit input 



 9

representation, this 9,216 (16 x 12 Gabor filters x 6 scales x 8 orientations) element 

perceptual representation was compressed into a 50-element representation with PCA. 

In the split input representation, the face was split into left and right halves, and each 

had 16 x 6 Gabor filters (4,608 elements). The perceptual representation of each half 

was compressed into a 50-element representation (hence in total there were 100 

elements) 2. After PCA, each principal component was z-scored to equalize the 

contribution of each component in the models. In the three models, the early 

convergence model had a nonsplit input representation, whereas both the intermediate 

and late convergence models had a split input representation. In order to equalize their 

computational power, the hidden layer of the early and the intermediate convergence 

models had 20 units, and each of the two hidden layers of the late convergence model 

had 10 units; in the intermediate convergence model, half of the connections from the 

input layer to the hidden layer were randomly selected and removed. Hence, the three 

models had exactly the same number of hidden units and weighted connections. To 

implement the second stage of the DFF theory, we gated the spatial frequencies by 

scaling the Gabor filter responses using a sigmoidal weighting function (Figure 4). 

This process biased the Gabor responses on the left half face (RH) to LSF and those 

on the right half face (LH) to HSF. We also conducted a separate baseline simulation 

in which no such frequency bias was applied; more specifically, the weighting 

function had a uniform distribution and the LH and the RH received the same amount 

of information in all frequency scales (Figure 4). 

In short, we tried to bring the model architecture as close to the visual 

anatomy as possible. The Gabor filters correspond to V1; the PCA can be thought of 

as analogous to the information extraction/encoding process up to the lateral occipital 

region, e.g., the Occipital Face Area in face recognition (Gauthier et al., 2000), which 
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has been argued to be related to structural representation of faces (George et al., 1999); 

the hidden layer of the network has been associated with the fusiform area (e.g., FFA) 

(Tong et al., in press). Finally, the output layer has a unit for each individual subject. 

We examined the three models’ cognitive plausibility in addressing the left side bias 

effect in face perception with two face identification tasks. In order to examine 

whether the effect generalizes to expert object recognition, we also conducted a 

Greeble identification task (we describe the details of each task in the following 

section together with the results). In each task, we ran each model 80 times and 

analyzed its behavior with ANOVA after 100-epoch training (their performance on 

the training set all reached 100% accuracy). The training algorithm was discrete back 

propagation through time. (Rumelhart, Hinton & Williams, 1986), with a learning rate 

of 0.1. Performance was analyzed at the end of 7 time steps (cf. Shillcock & 

Monaghan, 2001; Hsiao & Shillcock, 2005b)3.The independent variables were 

architecture (early, intermediate, and late convergence) and frequency bias (unbiased 

vs. biased). The dependent variables were accuracy and size of left side bias effect. To 

examine the size of left side bias effect, we took output node activation for a 

particular individual as a measure of similarity between the chimeric face and the 

original face. After training, we presented the networks with left and right chimeric 

faces using test set images. The size of left side bias effect was measured as the 

difference between the activation of the output node for the original face when the left 

chimeric face was presented and when the right chimeric face was presented (note 

that output activation ranged from 0 to 1). For each simulation, the materials consisted 

images of 30 different individuals (so there are 30 output nodes; see the following 

sections for simulation details). Two datasets were created for training and testing and 

the order was counterbalanced across the simulation runs. In order to eliminate any 
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bias effect due to the baseline difference between the two sides of the images, in half 

of the simulation runs the mirror images of the original images were used. 

 

RESULTS 

In our first experiment, we trained the network to identify 30 individuals whose 

images varied in facial expression (thus their expressions were noise with respect to 

the identity classification; Figure 5). We used two datasets of the 30 individuals, with 

four expressions in each dataset, for a total of 120 training and 120 test images. These 

images were taken from CAlifornia Facial Expressions dataset (CAFÉ; Dailey, 

Cottrell, & Reilly, 2001). The generalization accuracy results showed a significant 

interaction between architecture and frequency bias (F(2, 474) = 8.513, p < 0.001; 

Figure 6(a)). In general, biased spatial frequency hurt performance (F(1, 474) = 

33.254, p << 0.001), and the later the convergence, the bigger the effect. As for the 

left side bias effect for chimeric faces, there was a main effect of architecture (F(2, 

474) = 141.457, p << 0.001), a main effect of frequency bias (F(1, 474) = 709.651, p 

<< 0.001), and a significant interaction between architecture and frequency bias (F(2, 

474) = 144.386, p << 0.001; Figure 6(b)). None of the models had a left side bias 

effect in the unbiased frequency condition. In the biased frequency condition, there 

was a significant left side bias effect in the late (F(1, 158) =596.068, p << 0.001) and 

intermediate convergence models (F(1, 158) = 520.160, p << 0.001). In contrast, the 

early convergence model did not have the left side bias effect (F(1, 158) = 3.861, n.s.). 

This suggests that in the biased condition, converging at an early stage (i.e., nonsplit 

representation) may still extract balanced low and high frequency information for 

recognition, whereas converging at a later stage (i.e., split representation) allows more 
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low frequency information from the left half face to the hidden layer, and 

consequently brings about the left side bias effect4. 

In order to reconfirm the left side bias effects we obtained, we conducted 

another simulation of face identification, using multiple lighting conditions as the 

variability factor across images of the same person. We selected face images from 

Yale face database (Georghiades, Belhumeur, & Kriegman, 2001) with a light source 

moving from right to left. Each individual had eight different lighting conditions 

(Figure 7); the lighting conditions in the training and test datasets had the same 

azimuths but different altitudes. The results showed that the late convergence model 

performed the worst (F(2, 474) = 158.918, p << 0.001), and performance in the 

unbiased frequency condition was better than the biased frequency condition (F(1, 

474) = 172.075, p << 0.001; Figure 8(a)). As for the left side bias effect for chimeric 

faces, there was a main effect of architecture (F(2, 474) = 233.286, p << 0.001), a 

main effect of frequency bias (F(1, 474) = 369.360, p << 0.001), and a significant 

interaction between architecture and frequency bias (F(2, 474) = 242.055, p << 0.001; 

Figure 8(b)). The frequency bias again significantly induced the left side bias effect in 

the late (F(1, 158) = 231.353, p << 0.001) and intermediate convergence models (F(1, 

158) = 524.643, p << 0.001); the early convergence model failed to show the left side 

bias effect; in fact, it exhibited a slight right side bias effect (F(1, 158) = 86.509, p << 

0.001). The results hence confirmed again that the intermediate and late convergence 

model had a strong left side bias effect, and the early convergence model was not able 

to exhibit the left side bias effect in human data. 

We turned to see whether similar effects can be obtained in Greeble 

recognition. Since objects such as Greebles do not have expressions; we were only 

able to replicate the lighting experiment with them. Our previous work suggests that 
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once a network becomes a Greeble expert, it behaves analogously to a face expert 

(Tong et al., in press). Hence, we examined the networks’ performance on 

recognizing Greebles under different lighting changes. We considered the sun as the 

major source of light in nature, and its azimuth increases during a day and its altitude 

first increases and then decreases from midday. In each of the two datasets created, 

each Greeble had eight images under the eight different lighting conditions shown in 

Figure 9. 

The first set was Greebles under the San Francisco sun, and the other was the 

same Greebles in Ketchikan. Hence, in the two datasets, the sun positions had 

different azimuths and altitudes. The accuracy results showed that there was a main 

effect of frequency bias (F(1, 474) = 94.089, p << 0.001): performance in the 

unbiased  frequency condition was better than the biased frequency condition (Figure 

10(a)). As for the left side bias effect for chimeric Greebles, there was a main effect of 

architecture (F(2, 474) = 100.768, p << 0.001), a main effect of frequency bias (F(1, 

474) = 13.891, p < 0.001), and an interaction between architecture and frequency bias 

(F(2, 474) = 178.707, p << 0.001; Figure 10(b)). Similar to the previous simulation 

with faces, the frequency bias significantly induced the left side bias effect in the late 

(F(1, 158) = 25.279, p << 0.001) and intermediate convergence models (F(1, 158) = 

202.184, p << 0.001); the early convergence model did not have the left side bias 

effect; it exhibited right side bias instead (F(1, 158) = 173.858, p << 0.001). The 

results thus predict that the left side bias effect may also exist in Greeble experts. 

 

DISCUSSION 

In the current study, we explored split architecture in modeling face and object 

recognition in order to examine the timing of convergence of the visual field split; 
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more specifically, we aimed to examine at which processing stage the representations 

of the two visual hemifields converge. We tried to bring the model architecture and 

computation as close to known aspects of visual anatomy and computation as possible, 

and applied the DFF theory to simulate the fundamental hemispheric processing 

differences: for the input representation, we first selected a task relevant frequency 

range, and then biased the information coming into the RH (i.e., left half of the input) 

to low frequency and that coming into the LH (i.e., right half of the input) to high 

frequency through a sigmoidal weighting function. We then compared performance 

and cognitive plausibility of three cognitive architectures with different timings of 

convergence. We showed that, in this computational exploration, the combination of 

the spatial frequency bias and the splitting of information processing between left and 

right are sufficient to show the left side bias effect, but neither alone can show the 

effect. This is consistent with the observation that there is a low spatial frequency bias 

in face identification, both in humans and computational models (Schyns & Oliva, 

1999; Dailey & Cottrell, 1999). This is reflected in the higher activation of the 

identity unit when the model’s right hemisphere receives the same side of the face it 

was trained upon, compared with when it does not.  

The failure of the early convergence model in exhibiting the left side bias 

effect suggests that the initially split visual input may converge at an intermediate or 

late stage, after some information extraction/encoding has been applied separately in 

each hemisphere. This result is consistent with several behavioral studies showing that 

each hemisphere seems to have dominant influence on the processing of the visual 

information presented in the visual hemifield to which it has direct access, for both 

centrally presented stimuli (e.g., Brady et al, 2005; Hsiao et al., 2006; Lavidor & 

Walsh, 2004) and unilaterally presented stimuli (e.g., right visual field/LH advantage 
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in English word recognition; see Bryden & Rainey, 1963; Brysbaert & d'Ydewalle, 

1990). Recent electrophysiological studies of face and visual word recognition also 

support this claim: an early ERP component N170 is modulated by contralateral 

features of the stimulus, whereas late components that respond to task dependent 

information (e.g., P300 for face categorization and N350 for word naming) are 

usually bilaterally distributed (see, e.g., Smith, Gosselin, and Schyns, 2004; Schyns, 

Petro, and Smith, 2007; Hsiao, Shillcock, and Lee, 2007). The anatomical findings 

suggest that the abrupt increase of ipsilateral activity in the areas anterior to area V3a 

and V4v (Tootell et al., 1998) may be the locus of the convergence. Thus, from area 

V1 up to the level of area V3a and V4v, the information from the two visual 

hemifields may go through different encoding processes separately in different 

hemispheres and converge at least after the lateral occipital region. This claim is 

consistent with the findings from fMRI adaptation studies that the lateral occipital 

region (and also the inferior temporal region, such as FFA) has position-invariant 

properties in object recognition (e.g., Malach et al., 1998; Grill-spector, 1999; Large 

et al., 2006)5. It is also consistent with the observation from psychophysical studies 

that hemispheric differences in perception (as a function of spatial frequencies) must 

result from processes taking place beyond the sensory level (Sergent, 1982), since 

studies examining grating detection did not report a hemispheric difference in contrast 

sensibility or visible persistence (Di Lollo, 1981; Rijsdijk, Kroon, &Van der Wildt, 

1980; Peterzell, Harvey, & Hardyck, 1989; Fendrich & Gazzaniga, 1990). In other 

words, the two hemispheres may receive the same type of information at the sensory 

level; it is the encoding processes beyond the sensory level that results in the observed 

hemispheric differences in perception. The current split modeling thus allows us to 

infer possible functions and computations in different areas along the hierarchical 
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visual system through comparing the modeling data with behavioral, anatomical, and 

psychophysical data. 

The results from modeling Greeble recognition also showed a left side bias 

effect in both the intermediate and late convergence models, but not in the early 

convergence model. In human data, the left side bias effect has never been shown in 

recognition tasks other than faces, and hence has been considered a face-specific 

effect. However, it may also be due to our expertise in face processing (cf. Gauthier et 

al., 1999). The modeling result hence provides a testable prediction about whether a 

left side bias effect can also be observed in object recognition once expertise is 

acquired. 

Although it is beyond the scope of the current examination, the current study 

also brings about a theoretical question: why would such a visual field split and 

differential frequency bias exist in the brain? The current simulations seem to suggest 

that frequency biases deteriorate performance and may be suboptimal. Nevertheless, 

the advantage of the split and the frequency biases may be observed when the system 

(i.e., the brain) has to deal with tasks with different frequency requirements; for 

example, word recognition may rely more on high frequency information processing, 

in contrast with low spatial frequency information for face recognition. Thus, the 

design of differential frequency biases in the two hemispheres may be optimal given 

that the brain has limited computational resources.  These issues require further 

examination. 

The models we propose here unavoidably involve abstraction and assumptions 

about the underlying neural complexity, but they nevertheless address the issue under 

examination here and convey an important message to the research in computational 

modeling of cognitive processes. The study provides a computational explanation of 
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the cognitive implausibility of the early convergence model, which has been the most 

typical model for face/object/word recognition in the literature (e.g., Dailey & Cottrell, 

1999; Harm & Seidenberg, 1999; Riesenhuber & Poggio, 1999). The fact that the 

initial split has a functional significance has been overlooked in most computational 

models of cognitive processes; the current study shows that this fact does have 

significant impact on how modeling is able to explain and predict human behavior. 

Brysbaert (2004) takes city planning with a wide river running through the city center 

as an analogy with the representation of the visual field split in the brain - no matter 

how many bridges and tunnels are built, the communication across the river is always 

going to be more effortful than the communication within each half of the city. Thus, 

by analogy with city planning, it is reasonable to hypothesize that interhemispheric 

transfer in the brain is reduced in favor of intrahemispheric communication. The 

current modeling result is consistent with this view: the two halves of the 

representation go through separate encoding processes in the two hemispheres before 

the convergence.  

“No city planner can afford to overlook the presence of a wide river in a city”, 

as pointed out by Brysbaert (2004), not until we understand how the brain has solved 

the problem of the visual field split and the division of labor between the two 

hemispheres are we able to have a complete understanding about the recognition of 

visual stimuli. Researchers should now consider the influence of the split architecture 

in the brain on our perception and cognition. 
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Footnote 

1 The late convergence model differs from the split fovea model in that it does not 

have interconnections between the two hidden layers. We removed these 

interconnections here for comparison reasons; in separate simulations, we found that 

adding these interconnections did not change the effects we reported here. 

2 Although the split and nonsplit representation had different number of dimensions in 

the input layer, they both contained information from the first 50 principal 

components. This equalizes the information contained in each representation better 

than increasing the number of dimensions in the nonsplit representation to match that 

of the split representation. In fact, with 100 components, the nonsplit model performs 

worse. 

3 Although the networks do not have recurrent connections, we used discrete back 

propagation through time to be consistent with the split fovea model (Shillcock & 

Monaghan, 2001), which has recurrent connections between the two hidden layers. 

We found that adding these interconnections did not change the effects we reported 

here. 

4 The only difference between the early and intermediate convergence models was the 

input representation (nonsplit vs. split). In a separate simulation, we used a simple 

perceptron (i.e., the hidden layer was removed) to examine the baseline behavior 

between the two representations, and the split representation indeed had a left side 

bias effect whereas the nonsplit representation did not; this effect was consistent 

across the three simulations we reported here. 

5 Note that Large et al.’s (2006) study showed that the position invariance effect (i.e., 

the adaptation effect) in the lateral occipital region is greater within a hemifield than 

between hemifields, whereas FFA does not have this property, although both FFA and 
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the lateral occipital region have a preference for stimuli in the contralateral vs. 

ipsilateral visual hemifield. 
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 Figure 1. Left chimeric, original, and right chimeric faces (Images are taken from  

Bruce & Young, 1998, page 234). 

 

Figure 2. Architectures of different models. 

 

Figure 3. Nonsplit and split visual input representations. 

 

Figure 4. Sigmoidal weighting functions: unbiased (a = 0) and biased conditions (a = 

1.5). 

 

Figure 5.  Face images for facial expression recognition. 

 

Figure 6. (a) Performance and (b) Left side bias effect in the three models. Error bars 

show standard errors (* p < 0.01; ** p < 0.001; *** p < 0.0001). 

 

Figure 7. Face images for training. From left to right, the azimuths are: -60, -35, -20, -

10, +10, +20, +35, and +60. Altitudes range from -20 to 20. 

 

Figure 8. (a) Performance of the three models. (b) Left side bias effect in the three 

models. Error bars show standard errors (*** p < 0.0001). 

 

Figure 9. A Greeble, facing south, under the sun in San Francisco, California (latitude, 

longitude: 27.618, 122.373) and Ketchikan, Alaska (55.342, 131.647), from 9 am to 4 

pm. 
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Figure 10. (a) Performance of the three models. (b) Left side bias effect in the three 

models. Error bars show standard errors (*** p < 0.0001). 
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Figure 3. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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